

Imaging Performance Study: Overview

Stephen Unwin

Jet Propulsion Laboratory,
California Institute of Technology

June 1, 2011

Overview

 The Imaging Performance Study (IPS) is a community-wide demonstration of simulated exoplanet detection and characterization using three direct-imaging architectures

Intended use:

- As a tool for the community to evaluate the science capability of three specific instrument architectures
- To support community studies (and the ISWGs) leading to eventual recommendation of a mission architecture to the CAA in 2015

Objectives of the Imaging Performance Study

- Long-term goal is to provide the community with the tools needed to evaluate the scientific capability of different "New Worlds" mission architectures
- To gain community-based experience in the analytic processes needed to pull planet signatures out of the data + noise and artifacts
- To provide a set of simulation tools for use by the exoplanet community
- Evolve sophistication of modeling effort (instrument and facility, mission operations) incrementally and through continuous interaction with the community
- Recurring theme:
 - Engage the exoplanet science and technical community throughout this process to the maximum feasible extent

Approach: Community buy-in at each step

- Buy-in to the process by advocates for competing architectures is essential
 - Program decisions or recommendations must represent a broad community consensus
 - We need a consensus; but unanimity not required
- "Getting onto the same page"
 - Advocates make many claims
 - Other advocates refute those claims, but make their own
 - But it is very hard to make an objective comparison between them
- Verification of claims
 - The operational goal of the IPS is to provide the tools with which science capabilities can be objectively evaluated
 - The community conducts the evaluations: the purpose of the IPS is to facilitate that process
 - In the end, it's astronomers outside of the exoplanets field that we have to convince

The IPS is a comprehensive study, but...

- The IPS is not intended to be an exhaustive investigation of the parameter space of any of the architectures
- The IPS is not a competition to select the best architecture for a direct-imaging exoplanet mission!
 - NASA will select Interim Science Working Groups (ISWGs) to perform that task
- The IPS is not intended to carry out a full Design Reference Mission (DRM) study at this time, but can be extended later to provide this capability when the ISWGs conduct detailed architecture trades

Organizing the IPS

- Build on the successful experience of the SIM Blind study:
- Team A designs target solar systems
- Team B creates combines stellar and planetary systems with instrument and telescope models to generate observable data
- Multiple Team Cs (selected by competitive process from broad community) assist with Team A and B tasks and then extract planets from datasets
- Team D (from combined A-C personnel) score the results

Outputs of the IPS

- The Interim Science Working Groups (ISWGs) to be selected by NASA by ~Dec 2012 will receive:
 - A set of documented IPS tools for the major architectures
 - A set of algorithms, developed within the community, for extracting planets from realistic (x,y,λ,time) data cubes
 - An overview of the blind tests results by the combined Team BCD groups
 - Refereed results papers by the community 'Team Cs'

IPS Plan Phases

- Pre-phase 0 Simulation of RV and astrometric data via a GUI ('SEED')
 - Completed Dec 2010
- Phase 0 Demonstrate simulation environment to ExoPAG-4
 - V0.0: June 2011; limited functionality
- Phase 0.5 Develop end-to-end simulation environment
 - V0.5: ready for community use, Oct 2011
- Phase 1 Evaluation of 3 major instrument architectures by independent community teams
 - Conducted as a 'blind test', after dry runs
 - Study period: Oct 2011 Nov 2012
- Phase 2 Support for Interim Science Working Groups (ISWGs)
 - Enhancements to simulation environment or instrument models
 - Study period: Jan-Dec 2013

Overview of Simulation Environment

Sky simulation:

- Define the set of stars; planetary systems; local zodi; exozodi; background confusion (V~30 mag)
- All the 'Team C' groups will work from the same realization of the sky: stars, planets, local zodi, exozodi

Observing scenarios

Star visit cadence (simplified); s/c and/or starshade rolls

Instrument simulators

- Internal coronagraph for ~4m class telescope
- External occulter for up to ~4m class telescope, limited maneuverability
- Visible Nulling Coronagraph for up to ~6m segmented telescope (or 4 x 2m telescopes)

Simulator output

- A set of FITS data cubes (x,y,λ, time) one for every exposure (time, roll angle, for the given cadence)
- A log of all input parameters

Modeling Environment

- Models will run within the IPS environment
 - Simple ASCII parameter file interface
 - Web-based GUI interface
 - Output is a series of FITS $(x,y,\lambda,time)$ data cubes
- Models will include realistic values of key parameters and physical limitations on performance
 - Parameters and error terms will be adopted to roughly equalize the speckle contrast and time evolution in the image data cube
 - IPS is designed to explore science capability for a given instrument, and the efficiency of planet-extraction algorithms, not to pick a winner!

IPS Architecture

Community Participation in the IPS

- Community involvement is essential
- Your contributions are welcomed and solicited
- End-to-end simulation process should capture the essential characteristics of each architecture:
 - Instrument models
 - Observing scenarios
 - Realistic sources of noise and systematic errors
 - Plausible planetary systems as test cases
- To the max extent possible, these should be consensusdriven
- June-October 2012 is the time period for input, while IPS V0.5 is under development

Defining IPS Instrument Models and Setting Parameters

- We plan to hold a series of telecons during the summer
 - Webex and 800-number call-in
 - Document sharing
- Telecons will be (initially) every 2 weeks for up to 2 hrs, for each of (with contact info):
 - Internal coronagraphs (John Krist)
 - Visible nullers (Bertrand Mennesson)
 - External occulters (Eric Cady)
 - Infrastructure, star and planet lists, observing scenarios (Geoff Bryden)
- Please feel free to contact these folks with suggestion and/or contributions etc.

Schedule for Community 'Team Cs'

- Aug 2011 prepare RFP
- Early Sep 2011 NOI for proposals to RFP
- Mid-Sep 2011 Release RFP for community teams
- Mid-Nov 2011 Community 'Team Cs' selected
- Early Dec 2011 Team C meeting
- Jan 2012 Final definition of instrument and obs parameters
- Feb 2012 Conduct 'Open book' experiments
- Mar-Aug 2012 Community Team Cs analyze blind test data
- Sep-Oct 2012 JPL and Team Cs jointly evaluate results
- Nov 2012 Team Cs write final reports
- Nov 2012 Team Cs publish papers
- Dec2012 Assessment Team D delivers final report

Scope of Team C Proposals

- Proposal call (RFP) in ~Sep 2011
- Duration of contracts ~Nov 2011 ~Oct 2012
- Approximate dollar value (up to) \$100k per contract
- Teams will be solicited to work with simulated data representing one of the 3 major instrument architectures
- Up to 6 teams ideally 2 for each architecture will be selected
- Team C work will be in four phases
 - Phase 1.1 Dec 2011-Jan 2012 Jointly define final instrument and observing scenario parameters; develop signal analysis software
 - Phase 1.2 Feb 2012 'Open book' tests of signal analysis software and interfaces to IPS
 - Phase 1.3 Mar-Aug 2012 Analyze blind test datasets
 - Phase 1.4 Sep-Nov 2012 Assessment and publication

Backup:

Detailed Plans

Long-term objectives of the IPS

- To help the community achieve a key goal of the ASTRO2010 Decadal Survey: to detect and characterize Earth-like terrestrial exoplanets around nearby stars
- To provide the exoplanet community with the key tools needed to assess the science capability of different instrument architectures
- To help inform the choice of technologies that the Program should emphasize to enable the selection of a single approach in the ~2015 timeframe

Imaging Performance Study: Plan Phases

- Phase 0 Develop prototype (V0.0)
 - through May 2011
- Phase 0.5 Fully-functional (V0.5) IPS for community use
 - Jun-Sep 2011
- Phase 1 Science capability evaluation by community teams
 - Nov 2011 V1.0 IPS includes instrument models and key parameters agreed with community teams
 - Dec 2011-Dec 2012 'Blind' studies of planet extraction techniques
- Phase 2 Interim Science Working Groups (ISWGs) conduct Concept Studies
 - Jan-Dec 2013

IPS Phase 0 – through May 2011

- Pre-Phase 0
 - Simulator for Exoplanet/Exoplanetary System Data (SEED)
 - Simulation of RV and astrometric data via a GUI
 - Released 12/22/2010
- Re-baseline WF, schedule, deliverables, cost re-plan
- Define simulation architecture in detail
 - Data interfaces, simulation modules, parameter and data logging etc.
 (see block diagram) almost complete
- Major deliverable: working end-to-end simulation environment (Version 0.0) by 5/31/2011
 - Present at ExoPAG-4 Meeting
 - Includes Internal Coronagraph and External Occulter
 - Single star demonstration
 - Limited flexibility in setting parameters
 - Limited fidelity in image generation (e.g. speckle fields)

IPS Phase 0.5 – Develop IPS Version 0.5

- Major deliverable: fully functional end-to-end IPS simulation environment (Version 0.5) by 9/30/2011
 - Ready for use by data analysis Team Cs (internal and external)
 - All 3 major architectures:
 - Internal coronagraph
 - External Occulter
 - Visible Nulling Coronagraph
 - High fidelity in image simulators (e.g. speckle fields)
 - Realistic (x,y,λ,time) data cubes
 - Simplified observing campaign:
 - Observe a given list of nearby stars
 - Cadence of visits to each target, including s/c roll if necessary
 - Limited flexibility in setting input parameters

IPS Phase 0.5 schedule – Jun-Sep 2011

- ExoPAG-4, June 2011
 - Present development plan for IPS Version 0.5 → 1.0
 - Discuss overall goals and schedule
 - Advertise upcoming RFP opportunity
 - Engage technical community in defining instrument models and input parameters
- Community engagement in defining instrument models
 - Ongoing: June-Sep 2011
 - Series of technical meetings, telecons, and WebEx
- Release RFP for competed data analysis groups 'Team Cs' ~Aug 2011
 - Nominally ~6 teams at ~\$100k each
 - Teams may be led by advocates for specific architectures but don't have to be
- Team Cs selected in ~Oct 2011

IPS Phase 1 schedule – Oct 2011 - Dec 2012

- Team C Orientation Workshop ~Oct 2011
 - Agree for each architecture on:
 - Key instrument parameters
 - Observing scenarios
 - important for estimating science yield
 - Methodology and evaluation criteria
 - important for participant buy-in
- Team Cs develop their own (proprietary) planet detection software ~Oct-Dec 2011
- IPS Version 1.0 ready by Nov 2011
 - Includes instrument models and key parameters agreed with community teams
- Conduct 'open book' experiments ~Nov-Dec 2011
 - Verify software and data interfaces to IPS
 - Verify extraction of known planet signals; check approximate SNR

IPS Phase 1 – Blind Tests

- JPL-led 'Team B' administers the blind tests
 - Use planetary systems with statistical properties defined by the previous SIM Team A study
 - Team B knows the contents of the sky input to the simulations
 - 'Double Blind' methodology not deemed necessary
 - But any JPL-internal Team C would be firewalled
- JPL and Team Cs mutually agree on simulation parameters,
 ~Jan 2012:
 - Planet and zodi realizations are hidden from Team Cs
 - All other info is shared between teams:
 - star lists, observing cadences (different for each architecture, and agreed in advance)
- Team Cs conduct 'blind' tests ~Jan-Aug 2012
 - Teams run their own (proprietary) planet detection software
- JPL and Team Cs jointly evaluate results by ~Oct 2012

IPS Phase 1 – Draft schedule

- Conduct 'open book' experiments ~Nov-Dec 2011
- Begin full simulation and analysis task ~Jan 2012
- Complete simulations by ~Aug 2012
- JPL and Team Cs jointly evaluate results by ~Oct 2012
- Team Cs write final reports by ~Nov 2012
- Team Cs publish papers by ~Dec 2012
- Assessment Team D writes IPS Report by ~Dec 2012
- ExEP delivers the IPS to the NASA-selected ISWGs in ~Jan 2013:
 - IPS Report
 - Published Team C papers and Team BCD overview paper
 - Access to IPS tool set, with documentation

Expected status at end of Phase 1

- A faithful (but not exhaustive) characterization of the science capabilities of the 3 major coronagraph architectures
 - Realistic assessment of the science yield, if you built the instrument as simulated
- A quantitative understanding of the SNR (etc.) needed to extract a planet signature in a variety of realistic conditions
- An set of definitions for 3 architectures for further study by the ISWGs:
 - Optical design and performance specs
 - Mission design and observing scenarios documented
 - Key technology tentpoles identified
- These are what you'd need if you want to:
 - Write a definitive White Paper on each design, in a non-partisan way
 - Develop a DRM (Design Reference Mission) to scope the science
 - Make a first-order grass roots/analogy cost estimate
 - Identify the driving requirements and technology needs

IPS Phase 2 – Jan-Dec 2013

 Interim Science Working Groups (ISWGs) conduct Concept Studies

- ExEP provides:
 - Infrastructure support for IPS to the ISWGs
 - Updates to IPS instrument models as needed, resources permitting
 - Support for DRM studies

Expected status at end of Phase 2

- ISWGs deliver Concept Study Reports to NASA ~ Jan 2014
- Senior Review evaluation of the Concept Study Reports conducted ~Summer 2014
 - Organized by NASA HQ
 - ISWGs present the results of their study in a face-to-face meeting with review panel
 - Discuss any issues/questions with the panel
- Senior Review Report delivered to NASA ~ Dec 2014
- Report and resultant NASA decisions fed into DSIAC in 2015
- Green light to prepare for an ExEP mission selection in ~2020 !!

New Worlds Mission Start (pending LISA & IXO)

Phase A